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ABSTRACT
We explore the utility of future photometric redshift imaging surveys for delineating the large-
scale structure of the Universe, and assess the resulting constraints on the cosmological model.
We perform the following two complementary types of analysis.

(i) We quantify the statistical confidence and the accuracy with which such surveys will
be able to detect and measure characteristic features in the clustering power spectrum such
as the acoustic oscillations and the turnover, in a ‘model-independent’ fashion. We show for
example that a 10 000-deg2 imaging survey with depth r = 22.5 and photometric redshift
accuracy δz/(1 + z) = 0.03 will detect the acoustic oscillations with 99.9 per cent confidence,
measuring the associated preferred cosmological scale with 2 per cent precision. Such a survey
will also detect the turnover with 95 per cent confidence, determining the corresponding scale
with 20 per cent accuracy.

(ii) By assuming a � cold dark matter (�CDM) model power spectrum we calculate the
confidence with which a non-zero baryon fraction can be deduced from such future galaxy
surveys. We quantify ‘wiggle detection’ by calculating the number of standard deviations by
which the baryon fraction is measured, after marginalizing over the shape parameter. This is
typically a factor of 4 more significant (in terms of number of standard deviations) than the
above ‘model-independent’ result.

For both analyses, we quantify the variation of the results with magnitude depth and pho-
tometric redshift precision, and discuss the prospects for obtaining the required performance
with realistic future surveys. We conclude that the precision with which the clustering pattern
may be inferred from future photometric redshift surveys will be competitive with contem-
poraneous spectroscopic redshift surveys, assuming that systematic effects can be controlled.
We find that for equivalent wiggle detection power, a photometric redshift survey requires an
area approximately 12[δz/(1 + z)]/0.03 times larger than a spectroscopic survey, for a given
magnitude limit. We also note that an analysis of luminous red galaxies in the Sloan Digital
Sky Survey may yield a marginal detection of acoustic oscillations in the imaging survey, in
addition to that recently reported for the spectroscopic component.
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1 I N T RO D U C T I O N

Today’s most pressing cosmological questions demand the con-
struction of galaxy surveys of unprecedented depth and volume.
Such questions include: is the accelerating rate of cosmic expan-
sion driven by Einstein’s cosmological constant or some different
form of ‘dark energy’? What are the properties of this dark energy?
Can competing models of inflation be discriminated by accurate
measurements of the shape of the primordial power spectrum of
mass fluctuations?

�E-mail: cab@astro.ubc.ca (CB); sarah@sarahbridle.net (SB)

Galaxy surveys delineate the large-scale structure of the Universe
and thereby provide a powerful and independent constraint on the
cosmological model. The currently favoured ‘concordance model’
– in which ≈70 per cent of the energy density of today’s Universe is
resident in a relatively unclustered form known as ‘dark energy’ –
is evidenced by a combination of observations of the cosmic micro-
wave background (CMB) (e.g. Spergel et al. 2003) with either those
of galaxy clustering (e.g. Percival et al. 2001) or of high-redshift
supernovae (e.g. Riess et al. 1998; Perlmutter et al. 1999). Either pair
of these independent data sets is required to break the degeneracies
between model parameters and render a unique cosmology.

According to the standard cosmological theory, if the linear-
regime clustering power spectrum is measured with sufficient
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precision then it will no longer appear smooth and monotonic: spe-
cific features and modulations will become apparent. Two such at-
tributes are predicted: first, a series of acoustic oscillations – sinu-
soidal modulations in power as a function of scale imprinted in the
baryonic component before recombination (Peebles & Yu 1970; Hu
& Sugiyama 1996) – and secondly, a turnover – a broad maximum
in clustering power on large scales originating from the radiation-
dominated epoch. These features encode characteristic cosmolog-
ical scales that can be extracted from the observations, greatly
improving constraints upon cosmological models (e.g. Blake &
Glazebrook 2003; Seo & Eisenstein 2003). Moreover, other cur-
rently unknown modulations in power (e.g. signatures of inflation)
may be discovered when the clustering pattern is examined with
sufficiently high precision (e.g. Martin & Ringeval 2004).

Very recently, the acoustic signature has been convincingly
identified for the first time in the clustering pattern of luminous
red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS;
Eisenstein et al. 2005). The 2dF Galaxy Redshift Survey (2dFGRS)
has produced consistent measurements (Cole et al. 2005). These
results confirm previous tantalizing hints (e.g. Percival et al. 2001;
Miller, Nichol & Chen 2002). The challenge now is to make more
accurate measurements at different redshifts, using these features
to further constrain the cosmological parameters, in particular the
dark energy model. At low redshift, the available volume is limited:
the effect of cosmic variance is significant. Therefore, such sur-
veys are insensitive to clustering modes on very large scales and are
hampered by non-linear growth of structure on small scales. Higher
redshift large-scale surveys are consequently required to map greater
cosmic volumes: tracing clustering modes with longer wavelengths
and additionally unveiling the pattern of linear clustering to signif-
icantly smaller scales.

The high-redshift spectroscopic surveys currently being executed
[e.g. Deep Extragalactic Evolutionary Probe (DEEP2), Davis et al.
2003; VIMOS VLT Deep Survey (VVDS), Le Fevre et al. 2003]
cover solid angles of ∼10 deg2, which are insufficient for detect-
ing the predicted features in the clustering power spectrum. Such
projects are fundamentally limited by existing instrumentation, be-
ing performed by spectrographs with relatively small fields of view
(≈ 10–20 arcmin) and restricted (albeit impressive) multi-object ca-
pabilities. Some proposed new instrumentation addresses this diffi-
culty [e.g. the Kilo-Aperture Optical Spectrograph (KAOS) project,
Barden et al. 2004], permitting spectroscopic exposures over single
fields of ≈1 deg2 using ≈5000 fibres. However, these projects will
take many years to reach completion.

In this paper, we consider the role that photometric redshift cata-
logues derived from deep imaging surveys could play in addressing
the scientific goals outlined above. Extensive imaging surveys (cov-
ering ∼10 000 deg2) to reasonable depths (r ≈ 22) are ongoing (e.g.
SDSS); the implied redshift distributions map galaxies over cosmic
distances to z ≈ 1 with sufficient number density that clustering mea-
surements are limited by cosmic variance rather than by shot noise.
Future deeper imaging surveys [e.g. Pan-STARRS, Kaiser, Tonry &
Luppino 2000; Cerro Tololo Inter-American Observatory (CTIO)
Dark Energy Survey (DES), http://cosmology.astro.uiuc.edu/DES;
Large Synoptic Survey Telescope (LSST), Tyson et al. 2002] are
being planned to address a host of scientific questions including
in particular weak gravitational lensing. We argue that such sur-
veys will also provide powerful measurements of the features in the
galaxy clustering pattern.

The utility of photometric redshifts – derived from broadband
galaxy colours rather than from spectra – has been well-established,
with many different techniques being successfully utilized. The sim-

plest method involves the fitting of model spectral templates (e.g.
Bolzonella, Miralles & Pello 2000). Other approaches use spec-
troscopic ‘training sets’ to calibrate the photometric redshifts via
an empirical polynomial of colour terms (Connolly et al. 1995)
or an artificial neural network (Firth, Lahav & Somerville 2003).
The precision δz with which galaxy redshifts (and therefore radial
distances) may be determined varies with the method and filter
set used, together with the galaxy type, magnitude and redshift,
but at best is currently σ 0 ≡ δz/(1 + z) ∼ 0.03 [e.g. Classify-
ing Objects by Medium-Band Observations (COMBO-17), Wolf
et al. 2003]. For the SDSS imaging component, the rms photomet-
ric redshift accuracy varies from δz ≈ 0.03 for bright galaxies with
r < 18 to δz ≈ 0.1 for magnitudes r ≈ 21 (Csabai et al. 2003).

The blurring of large-scale structure in the radial direction due to
the photometric redshift error degrades measurements of the clus-
tering pattern. However, on physical scales larger than that implied
by the redshift error, the information is preserved. Moreover, on
smaller scales the tangential information always survives, and the
vast area which may be readily covered by an imaging survey can
potentially provide more independent structure modes on a given
scale than those yielded by a fully spectroscopic survey of a smaller
solid angle, implying very competitive cosmological constraints.
Photometric redshifts have already been used to construct volume-
limited samples of low-redshift galaxies and measure their angular
clustering properties (Budavari et al. 2003; see also Meiksin, White
& Peacock 1999; Cooray et al. 2001). The cosmological parameter
constraints resulting from future photometric redshift imaging sur-
veys have been simulated by Seo & Eisenstein (2003), Amendola
et al. (2005) and Dolney, Jain & Takada (2004).

In this study, we use a Monte Carlo approach to model the galaxy
power spectra resulting from a host of simulated photometric red-
shift surveys as a function of the limiting magnitude of the initial
imaging and the accuracy of the derived photometric redshift. Our
simulation methodology is described in Section 2, where first results
for the accuracy of power spectrum measurements are presented.
We infer constraints on the cosmological model using two com-
plementary methods with very different prior assumptions. First, in
Sections 3 and 4 we discuss in detail the resulting confidence of
detection of the acoustic oscillations and power spectrum turnover,
respectively, and the accuracy with which the associated character-
istic cosmological scales may be extracted. In these analyses, we
make minimal assumptions, purely concerning ourselves with the
statistical detection of power spectrum features relative to a smooth
monotonic fit. Secondly, in Section 5 we use the full power spectrum
shape information in conjunction with theoretical fitting formulae
to compute constraints on the basic parameters of the cosmological
model, in particular the baryon fraction �b/�m and the running
of the spectral index of the primordial power spectrum nrun. In all
cases we compare our results to those deduced from spectroscopic
redshift surveys. We evaluate the effect of the approximations of our
methodology in Section 6, in particular considering a wider range
of photometric redshift error distributions. Finally, in Section 7 we
outline the prospects for obtaining the requisite imaging depth and
photometric redshift accuracy using realistic future surveys.

2 M O D E L L I N G T H E P OW E R S P E C T RU M O F
P H OTO M E T R I C R E D S H I F T S U RV E Y S

2.1 Method summary

Our methodology for simulating the large-scale structure of future
galaxy surveys is to generate many ‘Monte Carlo’ realizations of
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galaxy distributions from a fiducial power spectrum. An observed
power spectrum is measured for each realization separately, using
techniques similar to those that would be employed for real survey
data. The resulting ensemble of observed power spectra can then be
used to quantify the error distribution in derived quantities, without
any need to approximate the likelihood surface by techniques such
as Fisher matrices (e.g. Seo & Eisenstein 2003; Dolney et al. 2004;
Amendola et al. 2005). For example, the standard deviation in the
measurement of the power spectrum P(k) in a given bin around scale
k follows from the scatter in the recovered values of P(k) in that bin
across the realizations, without the need for analytic approximations.

Our procedure for modelling photometric redshifts is to convolve
the simulated galaxy distributions in the radial direction with a pho-
tometric redshift error function (in the fiducial case, a Gaussian
with width σx in real space). The measured power spectrum is de-
rived by computing the Fourier transform of the whole survey box,
then discarding small-scale radial Fourier modes with wavenumbers
k rad � 1/σx (which contribute no signal due to the radial smearing).
Note that the resulting number of useful Fourier structure modes is
identical to that obtained if the survey box is instead split into many
independent slabs of width σx and a purely angular power spectrum
is measured for each slice.

In particular, we wish to assess the confidence with which we
can detect specific features in the clustering power spectrum such
as the acoustic oscillations and the ‘turnover’. These features can
be modelled by simple empirical formulae, which can be fitted
to each measured power spectrum realization, and the best-fitting
χ2 statistic calculated. The resulting best-fitting χ2 can be compared
with that of a smooth (featureless) power spectrum fit, resulting in
a relative probability of feature detection for each realization. The
distribution of the relative probabilities across the Monte Carlo real-
izations enables a very realistic assessment of the efficacy of future
surveys across the statistical ensemble of possible universes.

Furthermore, we are interested in recovering characteristic scales
from these features in the power spectrum. These scales can be
encoded into our empirical fitting formulae; the distribution of best-
fitting values of these scales across the realizations is indicative of
the realistic accuracy with which it is possible to measure them with
the simulated survey.

In order to perform our simulations, we must also adopt a fidu-
cial set of cosmological parameters that determine both the cosmic
volume mapped by a given survey and the fiducial power spectrum
(via the fitting formulae of Eisenstein & Hu 1998).

We characterize a photometric redshift imaging survey using two
parameters.

(i) The photometric redshift error distribution (in the simplest
case, a Gaussian distribution with standard deviation δz), which
controls the ‘smearing’ of the underlying large-scale structure in
the radial direction.

(ii) The threshold apparent magnitude of the input imaging cata-
logue, mlim, which determines the redshift distribution dN/dz of the
‘unsmeared’ galaxy distribution, i.e. the radial depth of the survey.
This magnitude limit is defined using the SDSS r-band filter.

In this paper, we present the results of simulations of a range of
photometric redshift surveys as a function of these two parameters.
We assume the survey area in all cases is 10 000 deg2.

In the following section, we provide a detailed account of the
assumptions and method we used to simulate the observed power
spectra. For analyses of future spectroscopic redshift surveys using
a similar method, we refer the reader to Blake & Glazebrook (2003)
and Glazebrook & Blake (2005).

2.2 Detailed simulation methodology

(i) A fiducial cosmology is chosen for the simulation. Unless
otherwise stated we assumed a flat � cold dark matter (�CDM)
universe with parameters �m = 0.3, �� = 0.7, h = 0.7 and
�b/�m = 0.15.

(ii) A limiting apparent magnitude mlim is assumed for the imag-
ing survey. A model redshift distribution dN/dz(m lim) is determined,
as described in Section 2.3.

(iii) A survey redshift range (zmin, zmax) and solid angle A� is
specified. We assumed A� = 10 000 deg2 for our imaging surveys.
The chosen redshift interval depends on mlim as described in Sec-
tion 2.3 (and listed in Table 1).

(iv) We performed our simulations using a ‘flat-sky approxima-
tion’ for computational convenience (this approximation has a neg-
ligible effect on our results as discussed in Section 6). A cuboid with
sides of comoving lengths (Lx, Ly, L z) is created, possessing a vol-
ume equal to that enclosed by the survey cone. We take the x-axis as
the radial direction. The length Lx is the comoving distance between
redshifts zmin and zmax, and the other dimensions are determined by
stipulating Ly = L z (although the results are independent of the
ratio Ly/L z , assuming that both of these dimensions are large
enough to imply a sensitivity to structural modes with scales con-
tributing to the acoustic oscillations).

(v) A model linear theory matter power spectrum P mass(k, z = 0)
is computed for the chosen parameters (�m, �b, h) from the fitting
formula of Eisenstein & Hu (1998), assuming a z = 0 normalization
σ 8 = 1 and a primordial power-law slope n = 1. The survey is
assumed to have an ‘effective’ redshift z eff = (zmin + zmax)/2. The
power spectrum is scaled to this redshift using a standard �CDM
growth factor

Pgal(k, zeff) = Pmass(k, 0) D1(zeff)
2 b2, (1)

where we use the Carroll, Press & Turner (1992) approximation
for D1(z) and a constant linear bias factor b for the clustering of
galaxies with respect to matter. The value b = 1 is assumed for
our surveys, unless otherwise stated. We neglect any evolution of
clustering across the depth of the survey box. This approximation
is discussed in Section 6; we note that the clustering amplitude of
galaxies is known to evolve much less rapidly with redshift than that

Table 1. Input parameters for simulated galaxy redshift sur-
veys as a function of limiting apparent magnitude in the SDSS
r filter, r lim. The ‘unsmeared’ redshift distribution is specified
by the values of z0 and �0 in accordance with equation (6).
The minimum and maximum redshifts of the simulated sur-
vey, zmin and zmax, are also listed.

r lim z0 �0 (deg−2) zmin zmax

18.0 0.1 120 0.1 0.4
18.5 0.12 230 0.1 0.5
19.0 0.14 410 0.1 0.6
19.5 0.16 710 0.1 0.6
20.0 0.18 1200 0.2 0.7
20.5 0.2 2000 0.2 0.7
21.0 0.22 3200 0.2 0.8
21.5 0.24 4900 0.2 0.8
22.0 0.27 7500 0.2 0.9
22.5 0.3 11 100 0.2 1.0
23.0 0.33 16 300 0.2 1.2
23.5 0.36 24 000 0.2 1.3
24.0 0.39 35 400 0.2 1.4
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of the underlying mass fluctuations (indicating an evolution of the
galaxy bias parameter in the opposite sense).

(vi) The location in k-space of the transition between the linear
and non-linear regimes of gravitational clustering, k lin, is determined
from Pgal(k) in a conservative manner (see Blake & Glazebrook
2003, fig. 1). We only measure power spectra in the linear regime,
i.e. for scales k < k lin.

(vii) A set of Monte Carlo realizations (numbering 400 for all
simulations presented here) is then performed to generate many
different galaxy distributions consistent with P gal(k), as described
in steps (viii) and (ix).

(viii) A cuboid of Fourier coefficients is constructed with grid
lines set by dki = 2π/Li, with a Gaussian distribution of amplitudes
determined from P gal(k), and with randomized phases. The gridding
is sufficiently fine that the Nyquist frequencies in all directions are
significantly greater than k lin.

(ix) The Fourier cuboid is fast Fourier Transformed to determine
the density field in the real-space box. The result is modulated by
the survey redshift distribution dN/dz. This observed density field
is then Poisson sampled to determine the number of galaxies in each
grid cell.

(x) A photometric redshift error distribution is assumed. For our
main set of simulations, we modelled this function as a Gaussian
distribution, such that the radial comoving coordinate x of each
galaxy was smeared by an amount δx sampled from a probability
distribution

f (δx) ∝ exp

[
−1

2

(
δx

σx

)2
]
. (2)

In practice, we specified a redshift error parameter σ 0 and derived
σx in accordance with the equation

σx = δz
dx

dz
(z = zeff) = σ0(1 + zeff)

c

H (zeff)
, (3)

where H(z) is the value of the Hubble constant measured by an
observer at redshift z. Equation (3) encodes the expected zeroth-
order dependence of photometric redshift precision, δz ∝ (1 + z),
originating from the stretching of galaxy spectra with redshift for a
filter system with constant spectral resolution �λ/λ. We assess the
effect of more complex photometric redshift error distributions than
equation (2) in Section 6.1.

(xi) The galaxy number distribution is ‘smeared’ along the
x-direction (radial) in accordance with the photometric redshift er-
ror function, taking pixelization effects into account. The resulting
distribution is our simulated photometric redshift survey. We note
that our simple photometric redshift error model represents a convo-
lution of the ‘unsmeared’ galaxy number distribution with the error
function f (x) (equation 2). In this case, according to the convolution
theorem, the resulting power spectrum signal is damped along the
radial direction

P(kx , ky, kz) → P(kx , ky, kz) exp
[ − (kxσx )2

]
, (4)

where g(kx) = exp[−(kxσx )2] is the square of the Fourier transform
of f (x).

(xii) The power spectrum of the resulting distribution is measured
using standard estimation tools: essentially this involves taking the
Fourier transform of the density field, subtracting that of the survey
window function and binning up the resulting modes in k-space (see
e.g. Hoyle et al. 2002; note that we do not use the optimal weighting
technique presented by Feldman, Kaiser & Peacock (1994) because
this does not represent a simple convolution of the density field
and consequently step (xiii) below would not be possible). Power

spectrum modes in Fourier space are divided into bins of total k,
up to a maximum of k lin. We only include modes with a value of
|kx| less than a maximum k x,max. This is because in accordance with
equation (4), the photometric redshift smearing damps the clustering
signal along the radial direction such that modes with high values
of |kx| contribute only noise. Hence the dominant contribution to
power spectrum bins with k > k x,max originates from tangential
Fourier modes with kx ≈ 0 and

√
k2

y + k2
z ≈ k. The value of k x,max

is determined by the equation

kx,max = 2/σx , (5)

where the coefficient of 2 was determined by experiment to be op-
timal for the surveys presented here. Use instead of a coefficient of
1.5 does not change the results significantly, but 1 is suboptimal.

(xiii) The measured power spectrum P(k) is ‘undamped’ by divid-
ing by a function f damp(k). This ‘damping function’ was determined
by binning the expression exp[−(kxσx )2] [from equation (4)] as a
function of total k as described in step (xii).

(xiv) An error bar is assigned to each power spectrum bin using
the variance measured over the Monte Carlo realizations.

We do not incorporate redshift-space distortions into our simula-
tions because the implied radial smearing due to peculiar velocities
is much less than that due to the photometric redshift error.

2.3 Modelling the redshift distribution

In order to model the ‘unsmeared’ survey redshift distribution as a
function of the limiting apparent magnitude of the imaging survey
mlim, we used the luminosity functions derived from the COMBO-17
survey (Wolf et al. 2003). Table A.2 of Wolf et al. (2003) lists
Schechter function parameters in redshift slices of width �z = 0.2
in the range 0.2 < z < 1.2 for the SDSS r filter. In the regime z <

0.2, we applied the locally determined SDSS luminosity function
(Blanton et al. 2003). For a given threshold apparent magnitude r lim,
we converted these luminosity functions into a redshift distribution
dN/dz for each redshift slice, fitting the overall result with a simple
model parametrized by a characteristic redshift z0 and an overall
surface density �0 (in deg−2) (e.g. Baugh & Efstathiou 1993)

dN

dz
= �0

3z2

2z3
0

exp

[
−

(
z

z0

)3/2
]
. (6)

The values of the fitted parameters are displayed in Table 1. We used
model K-corrections averaged over different galaxy spectral types.

For each apparent magnitude limit, we selected a redshift inter-
val (zmin, zmax) for the simulation. For all but the shallowest surveys
we set zmin = 0.2, the results are insensitive to this choice because
there is minimal volume contained by lower redshifts. As the value
of zmax increases, the variance in the recovered power spectrum is
determined by a balance between two conflicting effects: increasing
survey volume (i.e. decreasing cosmic variance) and decreasing av-
erage number density (i.e. increasing shot noise) owing to the fixed
magnitude threshold. We determined the optimal value of zmax for
each magnitude threshold by experimenting to determine the most
accurate measurement of the acoustic oscillations (see Section 3).
Our chosen ranges are listed in Table 1.

We note that the optimal value of zmax for measuring power spec-
trum modes around the turnover is marginally higher than that for
detecting the acoustic oscillations, because in the former case the
power spectrum amplitude is at a maximum, implying a lower re-
quired galaxy number density for suppressing shot noise. We always
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use the more conservative values of zmax in Table 1, but this does
not change our results significantly.

We note that all magnitudes referred to here are total galaxy mag-
nitudes, and we neglect all incompleteness effects associated with
surface brightness. These are expected to be minimal at high redshift
owing to the decreasing apparent size of galaxies. We also neglect
the fact that imaging surveys to depths r lim � 23 may be used to
select additional galaxy populations at z ≈ 3 using the Lyman break
technique.

2.4 Fractional errors in the power spectrum

We simulated photometric redshift surveys with limiting magni-
tudes varying from r lim = 20 to 24 and photometric redshift error
parameters in the interval σ 0 = 0.01 to 0.05. These ranges were
chosen to encompass the current state-of-the-art and realistic future
improvements. Achieving precision σ 0 = 0.01 would require ob-
servations with many narrow-band filters, probably encompassing
the near-infrared.

As a first application of our method, Fig. 1 displays the frac-
tional standard deviation in the power spectrum measurement as
a function of scale (averaged over the Monte Carlo realizations)
for some example photometric redshift surveys. The measured
power spectrum modes are averaged over angles in bins of width
�k = 0.005 h Mpc−1.

The scaling of the resulting power spectrum errors as a function
of k can be understood simply by counting the number of Fourier
modes, m, within each bin (the errors δP scaling as 1/

√
m). For a

bin with k � k x,max, these modes are located approximately within

Figure 1. Fractional error in P(k) against k for examples of photometric redshift imaging surveys. The left-hand panel illustrates the variation of the fractional
power spectrum error as a function of r lim for σ 0 = 0.03; the right-hand panel displays the dependence on σ 0 for r lim = 22. We bin the power spectra in
intervals of �k = 0.005 h Mpc−1. Simulated results for the SDSS main spectroscopic survey (dashed line) and SDSS LRG spectroscopic survey (dotted line) are
overplotted (see Section 2.4 for details of our models of these surveys). Considering the photometric redshift surveys, the fractional power spectrum precision
improves with increasing survey depth (left-hand panel) owing to the greater cosmic volume mapped and the consequently higher density of states in k-space.
The performance degrades with increasing σ 0 (right-hand panel) owing to the decreasing width of the ‘undamped’ slab in k-space (i.e. the decreasing value of
k x,max), although on very large scales (k < k x,max) all Fourier modes are retained and performance is unaffected.

an cylindrical annulus in Fourier space of radius k, thickness �k
and depth k x,max. This amounts to a volume in k-space equal to
2πk k x,max �k, i.e. δP ∝ k−1/2. This contrasts with a fully spec-
troscopic survey, for which the relevant Fourier modes for a scale
k reside within a spherical shell, such that δP ∝ k−1. Although a
photometric redshift survey maps out a reduced volume of Fourier
space, the larger density of states (owing to the increased cosmic
volume probed) can still result in a more accurate measurement of
the galaxy power spectrum.

In order to illustrate this point, we compare the power spectrum
accuracies for our simulated photometric redshift surveys with those
expected for the SDSS spectroscopic surveys (both the main survey
and the LRG survey). We created Monte Carlo power spectrum re-
alizations for these SDSS spectroscopic surveys using the method-
ology of Blake & Glazebrook (2003), which is very similar to that
presented in Section 2 above. The main differences are that no pho-
tometric redshift smearing is applied, and thus a conical geometry
may be employed rather than a flat-sky approximation (although
as discussed in Section 6, this makes a negligible difference to the
results). We modelled the SDSS main spectroscopic survey using
the redshift distribution

dN

dz
∝ z2 exp

[
−

( z

0.055

)1.31
]
, (7)

with a total surface density equal to �0 = 70.7 deg−2. This model
constitutes a good fit to the relevant luminosity function (Blanton
et al. 2003). The redshift interval of the simulation was 0 < z <

0.25. We approximated the LRG spectroscopic survey redshift dis-
tribution using the Gaussian function
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dN

dz
∝ exp

[
−

(
z − 0.375

0.065

)2
]

(8)

and a total surface density �0 = 17.2 deg−2, which provides a rea-
sonable fit to the radial selection function discussed by Eisenstein
et al. (2001). The redshift interval of the simulation was 0.3 < z <

0.45, and LRGs are assigned a linear bias factor b = 2 [see equa-
tion (1)]. For both spectroscopic surveys we assumed an areal cov-
erage of 10 000 deg2, the same as for the simulated photometric
redshift surveys.

As illustrated by Fig. 1, in the turnover regime (k < 0.02 h
Mpc−1) the photometric redshift surveys always yield more large-
scale modes than the SDSS spectroscopic surveys owing to the larger
cosmic volume mapped and the fact that the wavelengths of these
modes significantly exceed the length-scale of photometric redshift
radial smearing. In the acoustic oscillations regime (k > 0.05 h
Mpc−1), a 10 000-deg2 photometric redshift survey outperforms
the SDSS LRG spectroscopic survey provided that σ 0 � 0.03 and
r lim � 22.5.

3 M E A S U R I N G T H E AC O U S T I C
O S C I L L AT I O N S U S I N G P H OTO M E T R I C
R E D S H I F T S U RV E Y S

The clustering power spectrum on intermediate scales (0.05 < k <

0.3 h Mpc−1) contains small-amplitude (∼5 per cent) modula-
tions known as ‘acoustic oscillations’ (Peebles & Yu 1970; Hu
& Sugiyama 1996; Eisenstein & Hu 1998). These fluctuations
in power have an identical physical origin to those observed in
the CMB, namely, oscillations in the photon–baryon fluid before
recombination.

There has been considerable recent interest in exploiting these
acoustic features as an accurate and clean probe of the cosmologi-
cal model (Blake & Glazebrook 2003; Hu & Haiman 2003; Linder
2003; Seo & Eisenstein 2003). The approximately sinusoidal fluc-
tuations in power encode a characteristic scale – the sound horizon
at recombination – which can be measured from the CMB. This
scale can then act as a standard cosmological ruler (Eisenstein, Hu
& Tegmark 1999): its recovered value from a galaxy redshift survey
depends on the assumed cosmological parameters, in particular the
dark energy model, and may be used to constrain those parameters
in a manner that is probably significantly less sensitive to systematic
error than other probes (Blake & Glazebrook 2003).

Very recently, analysis of the clustering pattern of SDSS LRGs
at z ≈ 0.35 has yielded the first convincing detection of the acoustic
signal and application of the standard ruler (Eisenstein et al. 2005).
Although this survey does not have sufficient redshift reach to con-
strain dark energy models, this result is an important validation of
the technique. Indeed, detection of these acoustic features repre-
sents a fundamental test of the paradigm of the origin of galaxies in
the fluctuations observed in the CMB.

Utilization of the acoustic oscillations to measure the properties
of dark energy demands new galaxy surveys of unprecedented depth
and volume (Blake & Glazebrook 2003; Seo & Eisenstein 2003).
Given the current availability of large-scale imaging surveys such as
the SDSS, and the anticipated wait of several years for commence-
ment of projects with sufficiently capable spectroscopic facilities
able to survey ∼106 objects over ∼1000 deg2 (such as the KAOS
proposal), it is timely to evaluate the role photometric redshift sur-
veys could play in the detection and measurement of the acous-
tic oscillations. Furthermore, recently developed novel photometric

redshift techniques such as those utilizing artificial neural networks
should prove extremely useful in this regard (e.g. Collister & Lahav
2004).

The constraints on the cosmological model yielded by acoustic
oscillations in future photometric redshift surveys have been dis-
cussed by Seo & Eisenstein (2003), Amendola et al. (2005) and
Dolney et al. (2004). Here we take a different but complementary
approach. First, this previous work deduced cosmological param-
eter constraints using a Fisher matrix approach that provides the
minimum possible errors for an unbiased estimate of a given pa-
rameter, based upon the curvature of the likelihood surface near the
fiducial model. In the present study, we instead use Monte Carlo
techniques, which make a closer connection with the analysis meth-
ods that would be used for real data and can probe more realistic
non-parabolic likelihood surfaces. Secondly, we give detailed con-
sideration to the statistical confidence of detection of the relevant
power spectrum features, carefully separating this information from
that contained in the overall shape of the power spectrum, which may
be subject to additional systematic distortions, as discussed below.
Thirdly, by treating a wide grid of potential photometric redshift
surveys varying both the redshift accuracy and the limiting mag-
nitude, we can make a direct connection with the performance of
current and future experiments.

The comparison of photometric redshift and spectroscopic red-
shift surveys has already been discussed in detail by Blake &
Glazebrook (2003) and Seo & Eisenstein (2003). The relevant points
of these two papers are summarized as follows.

(i) As discussed in Section 2.2, Fourier modes with values of kx �
1/σx (where x is the radial axis) contribute to noise. A photometric
redshift survey therefore requires significantly more sky area than
a spectroscopic redshift survey of similar depth to yield the same
number of Fourier modes in a given power spectrum bin with scale
k � 1/σx .

(ii) Fourier modes with usable signal-to-noise ratios are largely
tangential (kx ≈ 0). Consequently, in the case of a photometric red-
shift survey, we are only able to apply the standard ruler represented
by the acoustic oscillations in the tangential direction, constraining
the coordinate distance x(z) to the effective redshift of the survey.
We lose the capacity of a spectroscopic redshift survey to apply the
ruler radially, measuring dx/dz (or equivalently the Hubble constant
at redshift z), which yields powerful additional constraints on the
dark energy model.

In this section, we present a series of simulations addressing the
issues of the confidence and accuracy of detection of acoustic os-
cillations as a function of photometric redshift error σ 0 (as defined
by equation 2) and limiting apparent magnitude r lim of the imaging
survey. We defer the questions of whether and how these require-
ments can be realized in realistic surveys to Section 7. We proceed
in a model-independent fashion, quantifying the statistical signifi-
cance with which we can assert deviations from a featureless mono-
tonic function, without using any of the information contained in the
power spectrum shape. In Section 5, we use a more model-dependent
approach, combining the full power spectrum shape function with
recent measurements of the CMB anisotropies to derive predicted
constraints on the cosmological parameters.

Our set of Monte Carlo realized power spectra enables us to eval-
uate statistical questions of confidence and accuracy over a realistic
ensemble of universes, without needing to approximate the statisti-
cal distributions or likelihood surfaces, except that when converting
values of the χ 2 statistic to relative probabilities we implicitly as-
sume that the errors in the measured power spectra are Gaussian,
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which agrees well with the histograms obtained from the Monte
Carlo realizations.

3.1 Confidence of detection of acoustic oscillations

We note that confidence of detection can be defined in several differ-
ent ways and depends strongly on statistical priors. One approach
to the data analysis would be to fit full �CDM transfer functions
(e.g. the formulae of Eisenstein & Hu 1998) to the measured power
spectra, and thereby determine that baryonic models (containing
acoustic features), provided a significantly better fit to the data than
models with �b = 0. We argue in the current section that this only
partially constitutes a detection of acoustic oscillations, because
information contained in the shape of the power spectrum is also
constraining this fit.

We adopted a conservative approach in which, prior to measuring
the preferred sinusoidal scale, we divided the measured power spec-
tra by a smooth ‘wiggle-free’ reference spectrum. For our purposes,
this is the ‘no-wiggles’ spectrum of Eisenstein & Hu (1998) (see
also Blake & Glazebrook 2003; with real data, additional smooth
polynomial terms can be fitted to remove any residual shape). We
therefore do not utilize any information encoded by the shape of the
power spectrum. The purpose of our philosophy is to maintain maxi-
mum independence from models and systematic effects: the shape of
P(k) may be subject to smooth broad-band systematic tilts induced
by such effects as complex biasing schemes, a running primordial
spectral index and redshift-space distortions. For the acoustic oscil-
lations analysis, the power spectrum is measured in bins of width
�k = 0.01 h Mpc−1. Plots of simulated power spectra divided by
reference spectra for different survey configurations are displayed
in Fig. 2.

Figure 2. Mean values of the power spectrum divided by the smooth reference spectrum, P(k)/P ref, averaged over the Monte Carlo realizations for various
photometric redshift surveys, together with the standard deviation in each bin. The left-hand panel illustrates the variation of the observed P(k)/P ref as a
function of r lim for σ 0 = 0.03; the right-hand panel displays the dependence on σ 0 for r lim = 22. Results for different surveys are offset for clarity. The
power spectra are plotted for wavelengths larger than the linear/non-linear transition scale k lin. This scale varies with the threshold magnitude r lim because it
is evaluated at the effective redshift of the survey zeff = (zmin + zmax)/2 (see Table 1). In all cases, we use a survey area of 10 000 deg2.

The resulting sinusoidal modulation for each realization is fitted
with a simple two-parameter empirical formula describing a decay-
ing sinusoid, i.e. equation (3) from Blake & Glazebrook (2003)

P(k)

Pref
= 1 + A k exp

[
−

(
k

0.1 h Mpc−1

)1.4
]

sin

(
2πk

kA

)
. (9)

For each realization, we recorded (i) the best-fitting characteristic
scale kA, (ii) the value of the χ2 statistic for the ‘no-wiggles’ model
[i.e. equation (9) with A = 0], χ2

no-wig and (iii) the value of the
χ 2 statistic for the best-fitting ‘wiggles’ model, χ2

wig-best. The χ 2

statistic was defined in the usual manner

χ2 =
∑

i

[
Pobs(ki ) − Pmodel(ki )

σP (ki )

]2

. (10)

Our flat-sky approximation implies that the off-diagonal terms of the
covariance matrix (i.e. correlations between adjacent power spec-
trum bins) are consistent with zero; this was explicitly tested by
computing full covariance matrices for a test case.

A simple relative probability of the ‘no-wiggles’ model and ‘wig-
gles’ model can be defined by

Prel = exp
[ − (

χ2
no-wig − χ 2

wig-best

)/
2
]

(11)

(but see below for further discussion). We note that the distribution
of values of Prel across Monte Carlo realizations of the universe is
far from symmetric, as illustrated by Fig. 3. In a universe falling
at the 50th percentile of the ensemble, the relative probability of
the ‘no-wiggles’ model compared to the ‘wiggles’ model would be
significantly lower than the mean of the distribution.

As our initial assessment of the confidence of detection of the
acoustic oscillations we considered the average value of the quantity
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Figure 3. Histogram of values of Prel (defined by equation 11) for 400
Monte Carlo realizations of a survey with r lim = 21.5 and σ 0 = 0.03,
illustrating the skewed distribution of probabilities (note the logarithmic
x-axis). The mean value of Prel (as plotted in Fig. 4) is indicated by the
vertical dashed line; realizations possess less confident detections of acoustic
oscillations than implied by this mean in just 19 per cent of cases.

Figure 4. Contours of the detection confidence of acoustic oscillations
defined by the average value of Pno-wig = Prel/(1 + Prel) (equation 11) for
photometric redshift imaging surveys with varying magnitude threshold r lim

and photometric redshift error parameter σ 0. The probabilities are expressed
as a rejection ‘number of sigmas’ for a Gaussian distribution. We use a survey
area of 10 000 deg2.

Prel defined by equation (11) over the Monte Carlo realizations.
We converted this into a probability for the ‘no-wiggles’ model by
using Prel = Pno-wig/P wig and Pno-wig + P wig = 1. Contours of
Pno-wig (expressed as a rejection ‘number of sigmas’ for a Gaussian
distribution) are displayed in Fig. 4 in the parameter space of (r lim,
σ 0). In order to obtain a 3σ detection confidence of 99.7 per cent
(P no-wig = 3 × 10−3) we require a survey with parameters such that

σ0 � (rlim − 19.5)0.01. (12)

As an alternative method of quantifying the ‘confidence of de-
tection’ of acoustic oscillations [i.e. the probability that A 	= 0 in
equation (9)] we considered the following Bayesian approach. We
placed a uniform prior on the value of A

Prior(A) = 1

Awid
Amin < A < Amin + Awid

= 0 elsewhere. (13)

Figure 5. Probability distributions (as defined by equation 14) of amplitude
A for the first five Monte Carlo realizations of a survey with parameters r lim

= 21.5 and σ 0 = 0.03. The curves are normalized such that P(Abest) = 1.
The range of intercepts at A = 0 illustrates the distribution of values for
Pno-wig across the Monte Carlo realizations.

We chose Amin = 0 and Awid = 3 ≈ 2A�CDM, to be conservative.
We assumed prior knowledge of the acoustic wavescale kA = 2π/s,
where s is the value of the sound horizon at recombination, known
very accurately from linear CMB physics [e.g. Eisenstein & Hu
(1998), equation (26)]. For an individual power spectrum realiza-
tion, the probability density as a function of amplitude A is

P(A) ∝ exp (−χ2/2), (14)

where χ 2 is the value of the chi-squared statistic of the fit of equa-
tion (9) to the data of that realization (with kA = 2π/s). Fig. 5
displays curves of P(A) against A for the first few Monte Carlo re-
alizations of a simulated survey with r lim = 21.5 and σ 0 = 0.03.

According to Bayesian statistics, the relative probability of a ‘no-
wiggles’ and ‘wiggles’ model for one realization is

Pno-wig

Pwig
= P(A = 0)[∫ ∞

−∞ P(A) Prior(A) dA
] . (15)

In the numerator of this expression, a δ-function prior centred at
A = 0 has been integrated over. Fig. 6 plots the average value over

Figure 6. Contours of the detection confidence of acoustic oscillations de-
fined by the average value of the Bayesian quantity Pno-wig (equation 15)
for photometric redshift imaging surveys with varying magnitude threshold
r lim and photometric redshift error parameter σ 0. The probabilities are ex-
pressed as a rejection ‘number of sigmas’ for a Gaussian distribution. We
use a survey area of 10 000 deg2.
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the Monte Carlo realizations of the quantity Pno-wig defined by equa-
tion (15) (expressed as a rejection ‘number of sigmas’ for a Gaussian
distribution) in the parameter space of (r lim, σ 0). Note that less con-
fident detections of the acoustic oscillations are implied by using
this prior, requiring surveys approximately half a magnitude deeper
for a 3σ detection. This is reasonable because the probability den-
sity of the ‘non-detection’ model with A = 0 is being compared to
the average probability density of models with A 	= 0, rather than
only to the best-fitting ‘detection’ model. This serves to illustrate
the critical role of priors in quantifying the ‘confidence of detec-
tion’. Note that if we had widened our prior yet further by allowing
a range in possible model acoustic oscillation scales kA then an even
higher performance survey would be required to achieve the same
detection confidence. An alternative prior on the amplitude for the
‘wiggles’ model would have been to use a delta function Prior (A) =
δ(A − A�CDM), which would produce very similar results to using
Prel [of equation (11)].

3.2 Accuracy of measurement of acoustic oscillations

We can also use our simulations to quantify the accuracy with which
the characteristic scale (i.e. standard ruler) can be recovered from
a photometric redshift survey, as a function of r lim and σ 0. This is
easily obtained as the spread in the best-fitting values of kA over the
Monte Carlo realizations. We defined this spread as half the differ-
ence between the 16th and 84th percentiles of the distribution of
fitted wavelengths. This quantity is plotted in Fig. 7 as a percentage
fractional precision �kA/kA in the parameter space of (r lim, σ 0).
The precision improves with both increasing r lim and decreasing
σ 0, peaking at ≈0.7 per cent for our highest-performance survey
(r lim = 24, σ 0 = 0.01).

In cosmological terms, this precision is equal to the accuracy with
which the quantity x(z eff)/s can be determined by the survey (where
x is the coordinate distance to the effective redshift of the survey
and s is the value of the sound horizon at recombination). This may
in turn be converted into confidence distributions for dark energy
models (e.g. Seo & Eisenstein 2003; Dolney et al. 2004; Amendola
et al. 2005; Glazebrook & Blake 2005).

3.3 Comparison with spectroscopic surveys

It is of great interest to compare the confidence and accuracy of the
acoustic oscillation measurement from putative photometric red-

Figure 7. Contours of the accuracy of determination of the characteristic
scale kA for photometric redshift imaging surveys with varying magnitude
threshold r lim and photometric redshift error parameter σ 0. We use a survey
area of 10 000 deg2.

Figure 8. Contours of the detection confidence of acoustic oscillations
defined by the average value of Pno-wig = Prel/(1 + Prel) (equation 11) for
spectroscopic redshift surveys with varying magnitude threshold r lim and
survey area A�. The probabilities are expressed as a rejection ‘number of
sigmas’ for a Gaussian distribution. This plot may be compared directly with
Fig. 4 for photometric redshift surveys (note the different ranges of x-axis).

shift surveys with those resulting from future spectroscopic redshift
surveys. We therefore created Monte Carlo power spectrum realiza-
tions of a grid of spectroscopic surveys, using the same techniques
as our photometric survey analysis. We varied the total survey area
A� (from 1000 to 10 000 deg2) and the limiting magnitude threshold
r lim (from 18 to 24).

For our spectroscopic survey analyses we assumed the same red-
shift distributions as a function of r lim listed in Table 1, although we
note that a realistic spectroscopic survey would more likely be di-
rected at a subpopulation such as star-forming galaxies with strong
emission lines, which would be selected in a more complex manner
than a simple magnitude cut.

Our spectroscopic redshift power spectra were analysed for
acoustic oscillation measurement in an identical manner to the pho-
tometric redshift surveys. For purposes of comparison, we bin power
spectra averaging over angles, and do not separate the results into
tangential and radial components. Fig. 8 displays the confidence
of detection as a function of (A�, r lim), quantified by the value of
Pno-wig in the same manner as Fig. 4. A 3σ detection of the acoustic
oscillations can be achieved by a spectroscopic survey with parame-
ters (A� = 1000 deg2, r lim = 22.5) or (A� = 3000 deg2, r lim = 21).
For comparison, an equivalent detection is yielded by a 10 000-deg2

photometric redshift survey with parameters (σ 0 = 0.05, r lim = 23)
or (σ 0 = 0.01, r lim = 20.5). Note that the confidences of detection
listed here are more conservative (by up to a factor of 4 in terms of
the number of standard deviations for a Gaussian distribution) than
those which would result from a full fit of a �CDM model power
spectrum, as discussed and compared in Section 5.1.

Fig. 9 displays the resulting accuracy of measurement of the char-
acteristic acoustic scale; this plot may be compared directly with
Fig. 7. For example, a spectroscopic survey of depth r lim ≈ 22.5
over A� ≈ 1000 deg2 will achieve a 2 per cent measurement of
the standard ruler (a similar precision is achieved by a 10 000-deg2

photo-z survey with the same depth and redshift error σ 0 = 0.03).
Figs 10 and 11 continue the comparison of photometric and spec-

troscopic surveys. In Fig. 10, we plot the ratio of areas of photometric
and spectroscopic surveys achieving the same accuracy of standard
ruler measurement for a fixed magnitude threshold common to both
surveys. We assume an area of 10 000 deg2 for the photometric
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Figure 9. Contours of the accuracy of determination of the characteristic
scale kA for spectroscopic redshift surveys with varying magnitude threshold
r lim and survey area A�. This plot may be compared directly with Fig. 7 for
photometric redshift surveys (note the different ranges of x-axis).

Figure 10. The area ratio of photometric and spectroscopic redshift sur-
veys achieving the same accuracy of standard ruler measurement for a fixed
magnitude threshold. This factor is determined by the photometric redshift
precision.

Figure 11. The magnitude threshold required by a 10 000-deg2 photometric
redshift survey (with σ 0 = 0.03) to match the standard ruler accuracy of a
grid of spectroscopic surveys with varying area and depth.

redshift survey and vary the area of the spectroscopic redshift sur-
vey, although the results are expected to apply more generally. From
Fig. 10 we see that, for a photometric redshift precision σ 0 = 0.03,
the area ratio for a fixed magnitude threshold is about a factor of

12. This is simply understood by the requirement that the number
of Fourier modes contributing to the power spectrum measurement
(m ∝ k x,max A� ∝ A�/σ 0) must be roughly equal in the two cases.
For example, if σ 0 = 0.03 then k x,max ≈ 0.02 h Mpc−1. However, for
a spectroscopic survey k x,max = k lin ≈ 0.2 h Mpc−1, thus the same
number of modes m is delivered by a survey area A� reduced by a
factor of ≈10. The relation m ∝ A�/σ 0 ≈ constant also explains
the overall scaling A� ∝ σ 0 apparent in Fig. 10.

A comparison at common magnitude threshold is of course sim-
plistic: for given observational resources, an imaging survey can
readily probe to fainter magnitudes. Therefore, Fig. 11 considers a
grid of spectroscopic surveys (parametrized by A�, r lim) and illus-
trates the magnitude depth required by a 10 000-deg2 photometric
survey with σ 0 = 0.03 to match the standard ruler accuracy. The
contours (r photo = 21 → 24) correspond to standard ruler accuracies
in the range 5–1.5 per cent (see Fig. 7).

4 M E A S U R I N G T H E T U R N OV E R U S I N G
P H OTO M E T R I C R E D S H I F T S U RV E Y S

According to standard cosmological theory, the clustering power
spectrum should exhibit a ‘turnover’ (i.e. a maximum in power) at
a characteristic scale k turn ≈ 0.015 h Mpc−1. The turnover arises
because the primordial power spectrum laid down by cosmological
inflation – hypothesized to be a featureless power law P prim(k) ∝
knscalar , where n scalar ≈ 1 – is suppressed by a ‘transfer function’ T(k)
owing to radiation pressure in the radiation-dominated epoch. The
resulting linear theory power spectrum is derived as P(k) ∝ P prim

(k)T (k)2, where T (k) ≈ 1 for k < k turn and T(k) decreases towards
zero for k > k turn with an approximate limiting dependence k−2. The
characteristic scale k turn is equivalent to the comoving horizon scale
at matter–radiation equality. This is sensitive to the quantity �mh2,
since the larger the physical density of matter (�mh2), the earlier
matter–radiation equality occurs, and suppression of growth due to
radiation oscillations below the Jeans length does not have time to
reach larger scales. Therefore, the scale of the turnover is smaller and
k turn is larger. (Note that since we measure redshift and not distance,
the x−axis of the power spectrum plot is in units of h Mpc−1, and
so the position of the turnover on a plot of P(k) against k/h depends
on �mh). Moreover, structure modes with wavelengths larger than
the turnover scale are relatively unaffected by physics subsequent
to inflation and potentially constitute a probe of the inflationary
epoch.

Detection of the turnover in the galaxy clustering pattern consti-
tutes an interesting test of the cosmological paradigm. Its absence
may imply either a failure of the standard cosmological theory, or
the discovery of new large-scale galaxy biasing mechanisms (e.g.
Durrer et al. 2003; i.e. the turnover is more susceptible to system-
atic distortions than the acoustic oscillations). Successful defini-
tion of the turnover requires a survey possessing an extremely large
volume to reduce the effect of cosmic variance. In addition, the
number density of the tracer galaxies must be sufficient to suppress
the shot noise contribution to the power spectrum error. For ex-
ample, quasi-stellar objects can easily be detected to high redshift
but possess an inadequate number density to permit an experiment
limited by cosmic variance (Outram et al. 2003). As a result, no sur-
vey has cleanly measured the turnover yet (in a model-independent
manner).

For a turnover detection experiment, spectroscopic-redshift ac-
curacy is not required. The relevant scales are sufficiently large that
equivalent information may be recovered from a photometric red-
shift survey, if the main contribution to the photometric redshift
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Figure 12. Mean values of the power spectrum P(k) averaged over the Monte Carlo realizations for various surveys, together with the standard deviation in
each bin. In this plot we do not divide by any smooth reference power spectrum. The left-hand panel illustrates the variation of the obtained P(k) as a function
of r lim for σ 0 = 0.03; the right-hand panel displays the dependence on σ 0 for r lim = 22. Results for different surveys are offset for clarity. The dashed line
tracks the value of k x,max for the surveys in question. For a bin at k < k x,max, no further improvement in power spectrum precision is possible via more accurate
values of σ 0, rather a survey must go deeper, mapping more cosmic volume and increasing the density of states in k-space. Power spectra are only plotted for
scales k < 0.05 h Mpc−1.

errors is statistical and not systematic. For example, for a survey
with σ 0 = 0.03 and z eff = 0.5, all Fourier modes with kx < k x,max ≈
0.02 h Mpc−1 > k turn survive the radial damping.

We now consider the detectability of the turnover and implied ac-
curacy of determination of the characteristic scale k turn for a series of
simulations varying r lim and σ 0. As before, our starting point is the
ensemble of power spectrum realizations obtained as described in
Section 2.2. For the turnover analysis, the power spectrum was mea-
sured in bins of width �k = 0.005 h Mpc−1. Because the turnover
in P(k) occurs at an approximate scale of k turn ≈ 0.015 h Mpc−1,
we only utilize power spectrum modes with k < 0.04 h Mpc−1 (i.e.
eight bins). Plots of simulated power spectra for different survey
configurations are displayed in Fig. 12.

As with the acoustic oscillations analysis, the significance of de-
tection of the turnover depends on our prior assumptions. We again
take a conservative approach, fitting our realized power spectra with
a simple empirical parabolic turnover model characterized by four
parameters

P(k) = P0

[
1 − α

(
k − k0

k0

)2
]

(k < k0)

= P0

[
1 − β

(
k − k0

k0

)2
]

(k > k0). (16)

The free parameters are the turnover scale k0, the maximum of the
power spectrum P0 and the amplitudes of the parabolic decrease
of power on either side of the maximum, α and β. In this sense,
a detection of the turnover is determined by finding a best-fitting
value for α significantly greater than zero, and is governed solely by

power spectrum modes at scales larger than the turnover scale (i.e.
k < k 0). The requirement that P(k) � 0 restricts the fitted parameters
to lie in the ranges P 0 � 0, α � 1, β � 1 and we implement these
conditions as strong priors in our fitting process.

By analogy with the acoustic oscillations analysis, we defined
the confidence of turnover detection for a given power spectrum
realization by comparing the χ2 statistic for the best-fitting turnover
model (i.e. equation 16) with that for the best-fitting ‘no turnover’
model, which we defined as equation (16) with α set equal to zero

Prel = exp
[ − (

χ2
no−turn − χ 2

turn−best

)/
2
]
. (17)

Fig. 13 plots the average value of Pno−turn = Prel/(1 + Prel) over
the Monte Carlo realizations (expressed as a rejection ‘number of
sigmas’ for a Gaussian distribution) in the parameter space of (r lim,
σ 0). In our highest-performance survey (r lim = 24, σ 0 = 0.01),
the turnover is detected with ≈99.5 per cent confidence (Pno−turn =
0.005). A 2σ detection in the mean realization requires r lim ≈ 22.5.
We note that, provided σ 0 � 0.04, the detection confidence is in-
dependent of the photometric redshift accuracy because all Fourier
modes beyond the turnover are retained in our analysis.

Fig. 14 quantifies the accuracy with which the characteristic
turnover scale k turn can be recovered from a photometric redshift
survey, as a function of r lim and σ 0, using the same technique as
for the characteristic acoustic oscillation scale in Section 3. In the
best case we considered, the turnover scale can be measured with
a precision of ≈12 per cent. This is considerably poorer than the
measurement accuracy of the acoustic oscillations scale, owing to
the broadness of the turnover and the vastly fewer Fourier modes
available at the relevant scales. This observation could in princi-
ple yield a 12 per cent measurement of �mh. This in itself is not
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Figure 13. Contours of turnover detection confidence defined by the av-
erage value of Pno−turn = Prel/(1 + Prel) (equation 17) for photometric
redshift imaging surveys with varying magnitude threshold r lim and pho-
tometric redshift error parameter σ 0. The probabilities are expressed as a
rejection ‘number of sigmas’ for a Gaussian distribution. We use a survey
area of 10 000 deg2.

Figure 14. Contours of the accuracy of determination of the characteristic
turnover scale k turn for photometric redshift imaging surveys with varying
magnitude threshold r lim and photometric redshift error parameter σ 0. We
use a survey area of 10 000 deg2.

particularly competitive with other techniques, but performing the
analysis in this model-independent way tests the fundamental as-
sumptions made in the standard analyses, and isolates the pos-
sible influences of relevant systematic effects. For example, it
may indicate that scale-dependent biasing occurs on large scales
(e.g. Dekel & Rees 1987), which would constitute a critical ob-
servation in the field of galaxy formation. Furthermore, precise
measurements of the large-scale clustering pattern may unveil
currently unknown signatures of inflation or of non-Gaussianity
(e.g. Martin & Ringeval 2004), pointing to a new cosmological
paradigm.

Unlike the case of acoustic oscillations measurement, we do
not make a comparison with spectroscopic redshift surveys for
our turnover detection experiment, because all relevant Fourier
modes are retained by a photometric redshift survey, and there-
fore the results would be unchanged if perfect redshifts were
known. Thus, photometric redshift surveys will always be more
efficient for turnover detection if the systematic errors can be
controlled.

5 M E A S U R E M E N T S O F T H E C O S M O L O G I C A L
PA R A M E T E R S

In this section, we adopt a more model-dependent analysis approach
to that performed in Sections 3 and 4, assuming the full theoreti-
cal framework of �CDM transfer functions and calculating how
our simulated measurements of the galaxy power spectrum from
photometric redshift surveys can be used to constrain cosmological
parameters more tightly. Our investigation here is thus independent,
but complementary, to the results presented earlier, and indicates
how the cosmological conclusions are tightened by the incorpora-
tion of more model assumptions.

We assume linear biasing, i.e. the galaxy power spectrum is a
constant multiple of the matter power spectrum, and marginalize
over this parameter with a flat prior. We assume that the bias pa-
rameter does not evolve with redshift, and discuss the effect of this
approximation in Section 6.

In order to search parameter space we use Markov Chain Monte
Carlo (MCMC) sampling using the Metropolis–Hastings algo-
rithm. In short, an MCMC ‘chain’ is made up of a list of ‘sam-
ples’ (coordinates in parameter space) that are obtained from
performing trial likelihood evaluations Pr(x). A new sample at po-
sition x i+1 is accepted with a probability min [Pr(x i+1)/Pr(x i ),
1]. The difficulty lies in suggesting good trial positions; we use
the latest version of COSMOMC (see Lewis & Bridle 2002 and
http://cosmologist.info/cosmomc for more information), which uses
Code for Anisotropies in the Microwave Background (CAMB;
Lewis, Challinor & Lasenby 2000) to calculate CMB and matter
power spectra. We ran MCMC chains for the least powerful photo-
metric redshift survey and used importance sampling to find param-
eter constraints for the better surveys.

We used flat priors on the CMB parameters �bh2, �ch2, θ peak,
τ , n s, n run and log 10(As). θ peak is used instead of the Hubble con-
stant h because it renders the MCMC method more efficient when
CMB data are included; it is defined by approximate formulae that
given the CMB first peak position in terms of the other cosmological
parameters. Therefore, for a given set of cosmological parameters,
θ peak can be converted into h, and vice versa. For the simulations
in this section, we take as our fiducial parameters those from the
abstract of Spergel et al. (2003): h = 0.72, �bh2 = 0.024, �mh2 =
0.14, τ = 0.16, n s = 0.99. The widths of the priors are chosen
to be sufficiently large that they have no influence on the results.
We assume adiabatic initial conditions with a negligible tensor
contribution.

5.1 Measurements of the baryon fraction

First we considered constraints on the baryon fraction resulting from
galaxy surveys alone, as a function of �mh. We fixed all other cos-
mological parameters at their input values for ease of comparison
with current galaxy power spectrum analyses (e.g. Cole et al. 2005).
We derived results for simulated power spectra from the SDSS main
spectroscopic survey (using the survey parameters listed in Sec-
tion 2.4) and for an SDSS photometric redshift imaging survey (as-
suming σ 0 = 0.03, r lim = 21) using a sky area 10 000 deg2 in both
cases. These contours are plotted as the darker lines in Fig. 12. Pho-
tometric redshifts from the SDSS imaging survey would produce
tighter parameter constraints than the final SDSS spectroscopic sur-
vey, if redshift accuracy σ 0 = 0.03 to a magnitude limit of r lim =
21 could be achieved. This is a challenging requirement, but may
be approachable by selecting LRGs.

In order to quantify the contribution of the overall shape to the
detection of �b/�m we added in as free parameters the Hubble
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constant and the primordial power spectrum tilt parameter ns. We
applied a Hubble Space Telescope Key Project (HSTKP) prior on
the Hubble constant, otherwise the Hubble constant had significant
probability above 100 km s−1 Mpc−1. The new constraints from the
projected SDSS spectroscopic and photometric redshift surveys are
shown by the lighter contours in Fig. 12. This is a more rigorous
test of detection of acoustic oscillations – hence the slightly wider
contours. The effect of relaxing the assumptions on ns and H0 is
small when the constraints are weak, since the prior that �b > 0
already limits the maximum error bar.

We quantify the constraint on the baryon density by calculating
the probability as a function of �b/�m marginalized over �mh and
any other parameters. We then find the error bar by halving the
distance between equiprobable limits containing 68 per cent of the
probability and quote a ‘number of sigma’ by dividing the fiducial
value of �b/�m by this error bar. The ‘number of sigma’ for our
full SDSS spectroscopic survey simulation decreases from 3.5 to
2.3 on allowing H0 to vary within the HSTKP prior and completely
freeing the spectral index ns. For the example photometric redshift
survey shown here, it changes from 9 to 5.

We note that the constraints on the baryon density from our anal-
ysis are rather weak from the main SDSS survey, despite the fact
that it is larger than the full 2dFGRS survey for which the baryon
density has already been detected with better confidence. This is
because we have assumed a relatively conservative value for the
maximum wavenumber fitted by the linear power spectrum, k max =
0.11 h Mpc−1 (see Section 2.2). The exact results are quite sensitive
to this value. In practice, experimental teams may choose to use a
larger value of kmax, obtaining tighter contours than those displayed
in Fig. 15, but increasing their sensitivity to the systematic uncer-
tainties of modelling the quasi-linear regime. For comparison with
existing measurements (e.g. Cole et al. 2005) and for maximum
contrast with the ‘model-independent’ sections, we fix H0 and ns

for the remainder of this section.
Fig. 16 displays how the detection confidence of �b/�m depends

on the parameters of a general set of future photometric redshift
surveys. We conclude that the significance of measurement of a
non-zero value for �b/�m will shortly be greatly improved by the
use of photometric redshifts. For a detection with 6σ confidence we
require a survey with r lim ≈ 20 and σ 0 � 0.04.
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Figure 15. Contours in the parameter space of (�b/�m, �mh) derived from
galaxy power spectrum measurements alone. To generate the red and black
(darker) lines we fixed other cosmological parameters at their input values.
The dashed red (darker) contour is for our projected SDSS spectroscopic
survey and the inner solid black (darker) contour is for a photometric survey
with σ 0 = 0.03 and r < 21. For the cyan and green (lighter) lines H0 and
ns are marginalized over using an HSTKP prior of 72 ± 8 km s−1 Mpc−1.
Only 68 per cent confidence contours are shown, for clarity.
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Figure 17. Input value of �b/�m divided by the 68 per cent confidence er-
ror margin for �b/�m (loosely speaking, the ‘number of σ of detection’) for
a range of spectroscopic redshift surveys with varying magnitude threshold
r and area. The shape parameter �mh is varied, as for the darker contours
in Fig. 12.

Equivalent confidences are shown in Fig. 17 for a general set
of future deeper spectroscopic redshift surveys. Clearly, for a
given magnitude limit, the area required to achieve a detection of
�b/�m 	= 0 is smaller than the 10 000 deg2 used for the photomet-
ric survey simulations with the same magnitude limit; however, to
survey this area is significantly more costly. A quantitative com-
parison between the results for spectroscopic and photometric red-
shift surveys is shown in Fig. 18. This is derived from the previous
two figures by calculating the area of spectroscopic survey required
to obtain the same detection confidence as the 10 000-deg2 imag-
ing survey, for each magnitude limit and photometric redshift error.
From this figure, it can be seen that the factor in area required to make
up for the photometric redshift uncertainties is about 12(σ 0/0.03)
and roughly independent of magnitude limit, in good agreement
with the ‘model-independent’ analysis.

The value of �b/�m is connected to the presence of the acoustic
oscillations in the matter power spectrum, and thus, as discussed

C© 2005 RAS, MNRAS 363, 1329–1348



1342 C. Blake and S. Bridle

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

2

4

6

8

10

12

14

16

18

Photoz error σ
0
 = δ z /(1+z)

A
re

a 
fa

ct
or

 to
 m

at
ch

 s
pe

cz

r<20
r<22
r<24

Figure 18. Area factor required to obtain the same accuracy of measurement
of �b/�m for a photometric redshift survey as for a spectroscopic survey.

in Section 3, a high-significance measurement of a non-zero value
for �b/�m could be considered as a potential ‘detection’ of the
existence of these acoustic features. Our treatment in the current
section is thus more model dependent than and complementary to
our analysis method of Section 3. In the present section, we implic-
itly assume as a prior the entire �CDM framework in which the
acoustic oscillation position, amplitude and matter power spectrum
shape are intrinsically linked; whereas in Section 3 we adopted a
more conservative approach, simply fitting a modified sinusoidal
function to the simulated data.

Therefore, it is not surprising that our detection confidences
for �b/�m 	= 0 are somewhat tighter than those for a ‘model-
independent’ detection of acoustic oscillations. Roughly, the 8σ

lines in Fig. 16 lie on the 2σ lines of Fig. 4. Generally, the number
of σ is a factor of 4 larger for the ‘model-dependent’ fit with h and
ns held fixed. As illustrated by Fig. 15, if we instead marginalize
over the Hubble constant, with an HSTKP prior and free ns, then
the measurements are much less accurate. The r < 21, σ 0 = 0.03
survey constraint weakens from 9σ to 5σ on freeing h and ns in this
way, compared to 2.2σ for the fully ‘model-independent’ fit.

The two different analysis methods presented in this study (i.e.
Sections 3 and 5) are analogous to those used to detect the CMB EE
polarization signal [Degree Angular Scale Interferometer (DASI),
Kovac et al. 2002; Cosmic Background Imager (CBI), Readhead
et al. 2004]. For the first detection of a non-zero signal, the DASI
team used a ‘template’ for the shape of the EE power spectrum,
taken from the �CDM model that best fits the CMB TT data. By
contrast, the CBI team were the first to detect the phase and am-
plitude of the EE polarization signal using a model-independent
sine-wave fit, and found that the inferred values were consistent
with a �CDM model. In order to test the framework of the �CDM
model we argue that a precise measurement of baryon wiggles in
the matter power spectrum using a model-independent fit will be
an enormous breakthrough; this being done, more assumptions can
then be made to extract the most accurate possible measurements
of the cosmological parameters.

5.2 Measurements of the running spectral index

A vital role for measurements of the galaxy power spectrum is to
break the parameter degeneracies inherent in the CMB anisotropies.
Using a standard six-parameter �CDM model, the WMAP satellite

measurements can be readily converted to constraints on the matter
power spectrum (e.g. Tegmark 2003), which are sometimes erro-
neously interpreted to mean that there is no need for galaxy redshift
surveys. However, the most important current questions in cosmol-
ogy, such as the quest to quantify the properties of the dark energy
and inflation, demand that the simplest cosmological model be ex-
tended to encompass additional parameters, such as a time-varying
dark energy equation of state and a more general model for the pri-
mordial power spectrum of mass fluctuations. In these cases, the
degeneracies inherent in the CMB become insuperable, and high-
quality additional data are essential.

In the standard six-parameter cosmological model, it is assumed
that the scalar perturbations have a power-law power spectrum
parametrized by a single spectral index ns. However, the simplest
inflationary models predict that this index should exhibit a slight de-
pendence on scale, often parametrized nrun, such that the primordial
power spectrum assumes the form

P(k) ∝ (k/k0)ns+nrun log (k/k0), (18)

where, according to standard inflationary models, n run ∼ 0.002.
This parameter nrun has been the subject of much recent debate
due to the apparent detection of a non-zero value by the WMAP
team (Spergel et al. 2003) at n run = −0.031 ± 0.024 from WMAP,
2dFGRS, Arcminute Cosmology Bolometer Array Receiver
(ACBAR) and CBI. Therefore, we include nrun as an additional
parameter in our analysis, expanding the total number of fitted pa-
rameters to seven (noting that the presence of a running spectral
index is potentially degenerate with that of a scale-dependent bias).

Fig. 19 plots the resulting constraints on the primordial power
spectrum parameters of equation (18) – ns and nrun – when the
WMAP CMB data are combined with our simulated 10 000-deg2

SDSS main spectroscopic and photometric redshift (σ 0 = 0.03)
surveys. The more accurate power spectrum measurements yielded
by the photometric redshift survey helps break the degeneracy be-
tween the scalar spectral index ns and the running spectral index nrun

[although the exact direction of the degeneracy is determined by the
pivot scale in equation (18), for which we use k 0 = 0.05 Mpc−1].

Fig. 20 displays the (1σ ) accuracy of measurement of nrun for
a general set of future photometric redshift surveys. For compar-
ison, our projection for the full SDSS spectroscopic sample is
±0.037. The constraint would be slightly tighter if more CMB data
were included in the analysis. The error in nrun is halved for our
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Figure 19. Confidence contours in the parameter space of (nrun, ns) re-
sulting from our simulated SDSS spectroscopic survey (outer contours) and
from a simulated SDSS photometric redshift survey with parameters r lim =
21 and σ 0 = 0.03 (inner contours). In each case, the galaxy power spectrum
data is combined with WMAP CMB data and we marginalized over the other
five cosmological parameters.
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metric redshift surveys with varying magnitude threshold r and photometric
redshift error parameter σ 0. In all cases we combined with WMAP data
and marginalized over the remaining cosmological parameters H 0, �bh2,
�mh2, τ , σ 8 and ns.

20 21 22 23 24
0.5

1

1.5

2

2.5

0.022

0.024
0.024

0.026

0.026

0.028

0.028

0.028
0.03

0.03

0.03
0.032

0.032

0.032

0.034

0.034

0.034

0.034

0.036

0.036

0.036

r magnitude threshold

A
re

a 
of

 s
pe

ct
ro

sc
op

ic
 s

ur
ve

y 
/ 1

00
0 

de
g2

Figure 21. 68 per cent confidence error margin of nrun for a range of spec-
troscopic redshift surveys with varying magnitude threshold r and area. In all
cases we combined with WMAP data and marginalized over the remaining
cosmological parameters H 0, �bh2, �mh2, τ , σ 8 and ns, as in Fig. 20.

best-possible imaging survey case (r lim = 24, σ 0 = 0.01), bringing
the limit in between that predicted by slow-roll inflation and that
indicated by the WMAP first-year results.

In Fig. 21, we show the equivalent constraints for a general set
of future spectroscopic redshift surveys. We see that to achieve
an error bar δn run = 0.03, a spectroscopic survey requires about
15 per cent of the area of a photometric redshift survey with σ 0 =
0.03 to the same magnitude limit.

As discussed above, detection of the matter power spectrum shape
on the largest scales is important because it has been unchanged
since inflation. In Fig. 22, we indicate the range of model matter
power spectra permitted by the WMAP data (Hinshaw et al. 2003;
Kogut et al. 2003; Verde et al. 2003) plus our fiducial SDSS pho-
tometric redshift survey, for a seven-parameter �CDM model (i.e.
including a free parameter nrun). This shows that despite the im-
provements in power spectrum precision, there is still some free-
dom in our knowledge of the matter power spectrum on large
scales.
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Figure 22. The range of model matter power spectra allowed by the WMAP
data combined with a photometric redshift survey with parameters σ 0 = 0.03
and r < 21, colour coded according to the value of nrun. The plotted data
points display the simulated photometric redshift power spectrum. Seven
cosmological parameters are allowed to vary: H 0, �bh2, �mh2, τ , σ 8, n s

and nrun. Since we marginalize over the linear bias parameter then for display
purposes the power spectra are normalized to go through the highest k data
point.

Further relaxations of the post-inflation assumptions will heighten
the importance of matter power spectrum information. Whilst the
increasing amount of CMB polarization information will help to
improve constraints, the range of possible models may be widened
even further. For example, in the above we have assumed that the
perturbations are adiabatic, with a negligible tensor contribution.
Moreover, in addition to adding tensors, a number of isocurvature
modes are possible, along with freedom in their spatial correla-
tions (e.g. Bucher et al. 2004). In addition, each mode has a power
spectrum that could be relaxed from the power law and gentle run-
ning forms assumed here. We would ideally like to reconstruct these
power spectra, or equivalently the inflationary potentials. For exam-
ple a phase transition during inflation can cause a step-like feature in
the scalar power spectrum, and trans-Planckian effects can induce
‘ringing’. This additional freedom can be constrained effectively by
combining CMB and large-scale structure information (e.g. Bridle
et al. 2003; Mukherjee & Wang 2004).

6 A S S E S S I N G O U R A P P ROX I M AT I O N S

We now assess the effect of the most significant approximations
contained in our methodology for simulating the accuracy of power
spectrum measurements (Section 2).

6.1 Photometric redshift error distribution

Our fiducial set of simulations assumed that the statistical distribu-
tion of photometric redshift errors could be described by a Gaussian
function characterized by a standard deviation (equation 2). This
spread can always be measured by obtaining spectra of a complete
subsample of the imaged galaxies.

However, a real flux-limited survey will inevitably contain a
combination of different classes of galaxy with different intrinsic
photometric redshift scatters. For example, LRGs have especially
strong spectral breaks which yield improved photometric redshift
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precision compared to an average galaxy possessing the same red-
shift and r-band magnitude.

We assessed the effect of such combinations via several test cases
in which the photometric redshift error distribution was modelled
by a sum of two Gaussian functions with different widths (denoted
σ 1, σ 2) and relative amplitudes (denoted b1, b2 such that b1 + b2 =
1). Specifically, we assumed σ 1 = 0.01, σ 2 = (0.03, 0.1) and
b2 = (0.1, 0.25), such that we are investigating the effect of a mi-
nority subpopulation with a significantly broader error distribution
than the majority of galaxies.

Our motivation is to verify that the single-Gaussian error func-
tion in Section 2 does not yield overoptimistic results relative to
a more realistic double-Gaussian model with the same standard
deviation, i.e. to check that our analysis is conservative. Thus, in
each case we compared the fractional power spectrum precision
resulting from the double-Gaussian model with that of a single-
Gaussian error distribution with the same overall standard deviation
(σeff =

√
b1σ

2
1 + b2σ

2
2 ).

For the double-Gaussian model, we derived the value of kx,max in
equation (5) by taking the value of σx corresponding to the tighter
of the two Gaussians (i.e. the dominant galaxy population). We
determined by experiment that this was optimal compared to other
possible choices, such as σx corresponding to the overall standard
deviation σ eff.

We found that the precision of power spectrum measurement was
never degraded by the assumption of a double-Gaussian model, and
in the case (σ 2 = 0.1, b2 = 0.1) was significantly improved com-
pared to our fiducial predictions for a single-Gaussian model owing
to the tighter core of the photometric redshift error distribution.
In other words, our previous analysis is indeed conservative: the
presence in real survey data of a minority subpopulation of galax-
ies with significantly poorer photometric redshift precision than the
overall standard deviation will not result in poorer power spectrum
measurements than those inferred by the equivalent single-Gaussian
function.

We also experimented with the addition of an overall systematic
offset zoff to the mean photometric redshift (relative to the spec-
troscopic value) of the second of the two Gaussian functions. For
the case (σ 2 = 0.03, b2 = 0.1), the power spectrum precision was
degraded by ≈10 per cent when zoff = 0.05. We note that such sys-
tematic effects can always be identified by spectroscopic follow-up
of a large enough complete subsample of the imaging survey.

6.2 Bias model

Inference of the clustering pattern from galaxy surveys is always
subject to uncertainties associated with the bias model, i.e. the
precise manner in which galaxy light traces the underlying mass
fluctuations. In our initial simulations, we assumed that this bias-
ing scheme was simply linear; but in general, the bias mechanism
will be non-linear, scale-dependent, non-local and evolving with
redshift.

Observationally, linear scale-independent bias appears a good ap-
proximation for a wide range of galaxy types on the large scales dis-
cussed here (e.g. Peacock & Dodds 1994): structure formation is still
in the linear regime and the physics of individual galaxy formation
should not be relevant. We note however that halo-dependent effects
may become important for the most massive galaxies (Peacock &
Smith 2000; Seljak 2000).

Even if bias is scale dependent on large scales, it would be
very surprising if it induced oscillatory features in k-space liable
to obscure the distinctive acoustic peaks and troughs. Our model-

independent analysis of acoustic oscillations detection in Section 3
should be robust to such systematic broadband tilts in the galaxy
power spectrum because the overall shape is divided out. Some au-
thors have argued that scale-dependent bias on large scales should
obscure the turnover (Durrer et al. 2003); if this property was con-
firmed observationally then it would undermine our turnover detec-
tion analysis of Section 4, but would tell us something interesting
about galaxy formation.

In addition, we assume that the biasing scheme does not depend
on redshift. This is in conflict with observational data: Lahav et al.
(2002) assume a model in which the clustering of galaxies remains
constant with time (in comoving space) whilst the dark matter per-
turbations grow, implying b(z) = b0/D(z) where D(z) is the linear
growth factor. Alternatively, if galaxies are assumed to follow the
cosmic flow and remain constant in number then an alternative func-
tional form is produced (Fry 1996) in which the linear bias parameter
evolves in proportion to its deviation from unity in the present-day
Universe according to b(z) = 1 + (b0 − 1)/D(z). Our fiducial model
is b(z) = 1, which is a special case of the Fry equation, and in fitting
to the data we have assumed the rather simplistic form b(z) = b0.

We note that despite their differences, all of these models have
the same number of free parameters, namely one, b0. Therefore,
if we were to fit instead the Fry bias model to a simulation with
b(z) = 1 then we would have the same amount of information avail-
able for extracting cosmological parameters. Clearly, b(z) = 1 is
not a solution of the ‘constant galaxy clustering’ (CGC) model of
Lahav et al. (2002), but relative to this model our simulation and
detections are conservative, since if b0 ∼ 1 today (as measured for
the 2dFGRS by Lahav et al. 2002; Verde et al. 2002) and b(z) =
b0/D(z) (CGC model) then the galaxy clustering at higher redshift
would be stronger than in our simulation and thus the signal-to-noise
ratio available for acoustic oscillation and turnover detection would
be increased.

We also point out the following.

(i) For a power spectrum measurement limited by cosmic vari-
ance (such as those discussed here), the fractional error in the power
spectrum (e.g. as plotted in Fig. 2) is independent of the overall am-
plitude of the power spectrum as determined by the bias model.

(ii) An incorrect assumption about the bias model would not shift
the acoustic oscillations along the wavenumber axis; the features
would remain in the same place and add up coherently when inte-
grating over redshift.

6.3 Curved-sky effects

Our flat-sky approximation would not be a valid analysis method
for a real 10 000-deg2 imaging survey: we must either break such a
survey into smaller sky areas or utilize a spherical harmonics decom-
position along the lines of Percival et al. (2004). However, given that
the fractional power spectrum accuracy of our simulated surveys is
determined principally by the cosmic volume surveyed, our results
should be representative. In order to verify this, we re-analysed the
SDSS main spectroscopic survey discussed in Section 2.4 by casting
the volume in a flat-sky box rather than a conical geometry (this case
is at very low redshift, hence is particularly sensitive to this flat-sky
approximation). The resulting power spectrum precision agreed to
within 10 per cent.

6.4 Analysis in redshift slices

Application of the flat-sky analysis method to a real photomet-
ric redshift survey (with the redshift errors assumed to smear the
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distribution along one axis only) must additionally involve the sur-
vey being split into redshift slices: any significant (�20 per cent)
variation of the angular diameter distance across an analysed box
would cause a smoothing out of the acoustic features. Again, our re-
sults should be representative because, regardless of the number of
redshift slices employed, the same number of independent Fourier
modes are being utilized (splitting a survey box into N slices de-
creases the k-space density of states in each slice by a factor of N,
but this factor is recovered by averaging over the slices). In order to
verify this point, we re-analysed a test case, dividing a broad red-
shift range into several flat-sky slices such that the volume contained
within each slice was equal to the original curved-sky volume (i.e.
increasing the width of the flat-sky slice with redshift). We addition-
ally varied the power spectrum amplitude in each slice in accordance
with the cosmological growth factor. We obtained the final survey
power spectrum by averaging the power spectra measured for the in-
dividual slices with inverse-variance weighting. The resulting power
spectrum precision (recovered from the Monte Carlo realizations
as usual) agreed with our original single-slice analysis to within
5 per cent.

6.5 Angular selection functions

In the present study, we have not considered any effects due to
complex angular selection functions, assuming that our survey area
is simply a uniform box on the sky. For a more complex survey
geometry [e.g. third SDSS data release (DR3)], the observed galaxy
power spectrum is smeared out according to the Fourier transform
of the observed sky area (and correlations between adjacent power
spectrum modes are induced). This convolution will smooth out
features such as acoustic oscillations, reducing their detectability,
thus surveys with reasonably contiguous geometries are required.
For example, the angular selection function of the 2dFGRS (Percival
et al. 2001) causes a smearing of the galaxy power spectrum, which
is most significant on large scales (i.e. small k) and almost a delta
function at k ∼ 0.1 h Mpc−1 (Elgarøy, Gramann & Lahav 2002).
Such a selection function would therefore not seriously degrade
measurement of the baryon oscillations; detection of the turnover
would be largely unaffected if the width of the smearing was smaller
than that of the turnover.

6.6 Dust extinction

Extinction by Galactic dust could affect the completeness of a survey
with a given magnitude limit, and also compromise the accuracy of
the photometric redshifts. This first problem has to be addressed for
both spectroscopic and imaging surveys alike, although the greatly
increased depth and areas covered by the imaging surveys imply that

Table 2. Existing and proposed photometric redshift imaging surveys; we only list projects mapping ≈1000 deg2

or more. For all future surveys the survey parameters are largely illustrative.

Survey Waveband Depth Area (deg2) Start date

SDSS DR3 ugriz r < 20.8 5282 Released
UKIDSS JHK K < 18.5 7500 2005

KIDS u′g′r ′i ′z′ r ′ < 24.2 1700 2005
VISTA Wide YJHK K < 19.5, Y < 22.0, J < 21.2, H < 20.0 3000 2006
VISTA Atlas JK K < 18.2, J < 20.2 20 000 2006
Pan-STARRS gRIZY R < 27.2 1200 2008

CTIO DES griz r < 24.1, g < 24.6, i < 24.3, z < 23.9 5000 2009
VISTA DarkCAM u′g′r ′i ′z′ r � 25 ∼10 000 2009

LSST rBgiz r < 26.5, B < 26.6, g < 26.5, i < 26, z < 25 15 000 >2012

this will be a larger problem relative to the small random errors. This
issue was discussed in detail by Efstathiou & Moody (2001), and was
found to be unimportant for their results but would in general affect
the galaxy power spectrum on the largest scales. For the purposes
of this paper we have assumed that these effects can be overcome.
The second problem affects only the photometric redshift surveys,
and addressing this potential problem satisfactorily is beyond the
scope of this paper. However, we note that in principle it could be
overcome if the photometric redshift algorithm could be calibrated
as a function of dust column density, for example, using a number
of narrow spectroscopic surveys (training sets) spanning a range of
Galactic extinction optical depths.

7 P RO S P E C T S F O R O N G O I N G A N D F U T U R E
P H OTO M E T R I C R E D S H I F T S U RV E Y S

We now discuss our results in the context of existing or proposed
imaging surveys that may be utilized for photometric redshift stud-
ies. Table 2 provides a list of such surveys, covering both optical
and near-infrared wavebands.

7.1 Photometric redshift estimation techniques

A variety of techniques have been proposed in the literature for
derivation of photometric redshifts from multi-colour photometry.
The photometric redshift performance depends on the method used,
together with a complex combination of the galaxy magnitude and
redshift, the filter set, the signal-to-noise ratio of the photometry
and the type of galaxy spectrum (in general, redder objects yield
more accurate photometric redshifts). A detailed simulation of this
myriad of factors is beyond the scope of this paper; however, some
general conclusions may be inferred using the photometric redshift
accuracies discussed in the literature.

The simplest photometric redshift techniques employ a limited
set of ‘template’ spectra corresponding to local elliptical, spiral
and starburst galaxies (e.g. Hyper-Z; Bolzonella et al. 2000). These
templates may be redshifted and fitted to observed galaxy colours,
deriving a likelihood distribution for the galaxy redshift. This ap-
proach has been successfully used in many cases (e.g. the Hub-
ble Deep Field North; Fernandez-Soto, Lanzetta & Yahil 1999)
and subject to various modifications such as the incorporation of
magnitude priors in a Bayesian framework (Benitez 2000) and
the iterative improvement of the initial templates (Budavari et al.
2000). Disadvantages of the method include the need for spec-
trophotometric calibration over a wide wavelength range, the diffi-
culty of incorporating galaxy evolution with redshift and the failure
of the template set to encompass all possible classes of observed
galaxy.
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Table 3. Existing and proposed spectroscopic redshift surveys.

Survey Selection criteria Area (deg2) No. galaxy redshifts Status

CFRS I AB < 22.5 ∼0.1 591 Released
CNOC-2 R < 21.5 1.5 6200 Released

COMBO17 (Photozs only) R < 24 0.25 10 000 Released
SDSS DR3 r < 17.1 4188 374 767 Released

VVDS CDFS (Le Fevre et al. 2004) I AB < 24 21 × 21.6 arcmin2 1599 Released
VVDS Deep I AB < 24 1.3 50 000 Ongoing
VVDS Wide I AB < 22.5 16 100 000 Ongoing

zCosmos I AB < 23 2 90 000 Ongoing
SDSS–2dF LRG i < 19.5 plus colours for 0.4 < z < 0.8 300 10,000 Ongoing

SDSS LRG i < 19.2 plus colours for 0.15 < z < 0.4 5000 75 000 Ongoing
SDSS-II r < 17.1 10 000 ∼106 Start 2005
DEEP2 RAB < 24.1 plus colours for z > 0.71 3.5 65 000 Ongoing
KAOS TBD ∼1000 ∼106 Proposed
SKA TBD ∼ 30 000 ∼109 Proposed

1 Preselected using BRI photometry

The availability of a training set – spectroscopic redshifts for a
complete subsample of imaged galaxies – is very helpful for ‘tun-
ing’ the photometric redshift technique. In Table 3, we list a number
of ongoing redshift surveys that could potentially be used for this
purpose. In one possible application of the training set, the galaxy
redshift is expressed as a polynomial in the colours, and the coef-
ficients are fitted using the training set (Connolly et al. 1995). Fur-
ther improvements are possible if a different polynomial is adopted
in each of a series of cells in colour-space (Csabai et al. 2003).
Alternatively, an artificial neural network may be trained to deliver
similar information (Firth et al. 2003; Collister & Lahav 2004).

7.2 Existing surveys: SDSS

The largest ongoing galaxy survey (Table 2) is the SDSS. Very
recently, the spectroscopic component mapping LRGs has been uti-
lized to obtain the first convincing detection of the acoustic scale
(Eisenstein et al. 2005). The inferred accuracy of the standard ruler
in this study was ≈4 per cent and the rejection significance of
�b/�m = 0 was 3.4σ . These results agree well with our own simula-
tion (see Section 2.4; we assume an expanded area of 10 000 deg2)
in which the average value of Prel (equation 11) over the Monte
Carlo realizations is 0.035 (i.e. 2.1σ for the ‘model-independent’
method – although 46 per cent of realizations perform better than
3σ – with a full �CDM fit expected to improve these figures as
noted in Section 5.1). Our simulated standard ruler precision is
2.5 per cent (the difference being explained by a scaling with a
survey area of

√
A�).

Turning now to analyses of the SDSS imaging component, Csabai
et al. (2003) applied a variety of photometric redshift techniques
to the Early Data Release, determining an overall rms redshift
scatter δz ≈ 0.03 for r < 18, rising to δz ≈ 0.1 at r ≈ 21, by
which point systematic redshift discrepancies due to large pho-
tometric errors have become important (i.e. the effective magni-
tude limit for reliable application of photometric redshifts may be
r lim ≈ 20). The VVDS survey data bases would constitute a suit-
able spectroscopic calibration set (see Table 3) for photometric red-
shift techniques that require it. As discussed in Section 6.1, the
inevitable presence of a small fraction of interlopers with signif-
icantly larger redshift errors does not compromise the scientific
results.

Combining these results with our Figs 4 and 13, we conclude that
a photometric redshift analysis of the entire SDSS imaging data base

may not succeed in detecting features in the galaxy power spectrum
in the model-independent manner discussed in Sections 3 and 4.
For example, even if σ 0 = 0.03 and r < 20.5 were possible, then
Figs 4 and 13 would imply a wiggle ‘detection’ with 90 per cent
confidence and a turnover ‘detection’ with 80 per cent confidence.
However, the prospects for using the �CDM fit in Fig. 16 are better,
implying a detection of �b/�m 	= 0 with a significance of 8σ (for
fixed values of h and ns).

However, it is clear that certain subclasses of galaxy perform sig-
nificantly better regarding photometric redshifts: SDSS red galaxies
yield an accuracy twice that of blue galaxies (Csabai et al. 2003),
and LRGs permit a rms redshift precision of σ 0 = 0.02 for z <

0.55 (Padmanabhan et al. 2005). In addition, these LRGs inhabit
massive dark matter haloes and are consequently biased tracers of
the large-scale structure (we assume a linear bias factor b = 2).
The resulting amplification of the clustering strength implies that a
lower space density is required to yield a given power spectrum ac-
curacy, although in some models of galaxy clustering the amplitude
of acoustic oscillations is diluted for the most massive galaxies (e.g.
Peacock & Smith 2000).

The optimal imaging approach is therefore to analyse an LRG
photometric redshift catalogue (a suitable spectroscopic training
set is the SDSS–2dF LRG redshift survey, see Padmanabhan et al.
2005). We simulated such a catalogue using a redshift interval
0.2 < z < 0.7, assuming a Gaussian redshift distribution peak-
ing at z = 0.45 of standard deviation z = 0.1. We supposed LRGs
could be selected from the photometric data with a surface den-
sity �0 = 100 deg−2 and photometric redshifts measured with an
accuracy σ 0 = 0.02 [i.e. δz = σ 0(1 + z eff) ≈ 0.03; see Padmanab-
han et al. 2005]. In addition, LRGs are assigned a linear bias factor
b = 2. Some of these assumptions may be optimistic, in particu-
lar Padmanabhan et al. note that the photometric redshift accuracy
degrades for z > 0.55. We quantified the confidence of detection
of acoustic oscillations for a 10 000-deg2 survey. The average value
of Prel is 0.056, corresponding to a detection slightly less confi-
dent than, but comparable to, the LRG spectroscopic data base,
with 28 per cent of realizations possessed a ‘model-independent’
confidence exceeding 3σ . The simulated accuracy of the stan-
dard ruler measurement is 3.8 per cent. For the turnover analysis,
our simulated detection confidence is low: we derive an average
value of Prel = 0.33, with an accuracy for the turnover scale of
27 per cent. Again, individual realizations may perform significantly
better.
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We conclude that the SDSS imaging data set has the potential to
yield a marginal model-independent detection of acoustic oscilla-
tions using a subsample of red galaxies. However, we caution that
the currently available SDSS DR3, which covers a sky area ≈5000
deg2, possesses a complicated angular window function which ren-
ders this experiment more difficult: as discussed in Section 6, the
observed power spectrum is a convolution of the underlying power
spectrum and the survey window function; if this latter possesses a
substantial width in Fourier space then the oscillatory signal will be
smoothed and consequently harder to detect.

7.3 Future surveys

We now turn our attention to future surveys. We first note that
the availability of near-infrared imaging to appropriate depths is
extremely valuable for galaxies with redshifts z > 0.4. In this
range, Bolzonella et al. (2000) derived a factor of 2 improve-
ment in redshift accuracy when JHK photometry was added to
the standard optical wavebands. The combination of the future
UKIRT Infrared Deep Sky Survey (UKIDSS) infrared data (see
Table 2) with the ongoing SDSS optical survey will therefore be
very powerful, and should permit detection of the acoustic oscil-
lations using the complete galaxy population rather than special
subclasses. For example, if the photometric error were halved from
σ 0 = 0.03 to σ 0 = 0.015 (assuming a magnitude threshold r =
20.5) then the model-independent wiggle detection limits in Fig. 4
show a detection at 99 per cent confidence (as opposed to just over
90 per cent without the infrared data).

It is clear from Fig. 4 that in order to deliver a high-significance
measurement of the acoustic peaks using photometric redshifts (to-
gether with a significant detection of the power spectrum turnover),
a much deeper optical data base is required (r ∼ 24) over an area
of several thousand square degrees. Such a catalogue may first be
provided by the CTIO DES(see Table 2). In this case, a photometric
redshift precision σ 0 = 0.05 suffices for delineation of the acoustic
oscillations and turnover, a redshift accuracy that has been achieved
in existing analyses of the Hubble Deep Field (e.g. Fernandez-Soto
et al. 1999). Furthermore, judged solely by the accuracy with which
the power spectrum features can be mapped out, this photometric
redshift approach will be competitive when compared to the spec-
troscopic redshift surveys, which will be contemporary to the DES
(e.g. the KAOS proposal) – although we note that in terms of mea-
suring the dark energy parameters, a spectroscopic survey yields
critical additional information in the radial direction (namely, the
Hubble constant at high redshift), which is forfeited by the photo-
metric redshift approach.

The ‘ultimate’ photometric redshift survey would cover an area
A�, approximating the whole sky to a magnitude depth r ∼ 26;
surveys with the LSST will approach these specifications (see
Table 2). If we assume that the redshift accuracy cannot exceed
the limit σ 0 = 0.01, in this best case a competing spectroscopic
survey would need to cover A�/4 ∼ 10 000 deg2 to produce com-
parable power spectrum constraints (i.e. trace the same number of
Fourier structure modes). In optical wavebands, spectrographs with
fields of view greatly exceeding 1 deg2 are prohibitively expen-
sive, but we note that redshift surveys for neutral hydrogen using a
next-generation radio telescope such as the Square Kilometre Array
would become competitive here (Blake et al. 2004), provided that
such a telescope was designed with an instantaneous field of view
of order 100 deg2 at frequency 1.4 GHz.

We note that ultimately the matter power spectrum derived from
gravitational lensing will circumvent the assumptions about bias

necessary for the interpretation of galaxy surveys. Of course, lensing
investigations can be performed with the identical imaging data sets
discussed here, and indeed the application of photometric redshifts
will form an important part of that interpretation. However, due to
the unknown intrinsic shapes of galaxies, many galaxies have to be
averaged to obtain a cosmic shear signal. Therefore, we will always
be able to obtain constraints from the galaxy power spectrum that are
vastly tighter than those inferred from the lensing power spectrum,
albeit less reliable owing to the caveats regarding bias. Thus, galaxy
surveys are the best place to look for the first glimpses of any exciting
new physics revealed by studies of large-scale structure.

8 C O N C L U S I O N S

We have used Monte Carlo techniques to estimate the measurement
precision of the galaxy power spectrum achievable using photo-
metric redshift imaging surveys with a variety of magnitude depths
and photometric redshift accuracies. We have focussed on two main
areas.

(i) The ‘model-independent’ measurement of specific features
in the galaxy power spectrum: the acoustic oscillations and the
turnover. In particular, we have carefully quantified the statistical
confidence with which these features may be detected, together with
the accuracy with which the acoustic and turnover scales can be
inferred.

(ii) The assumption of the �CDM paradigm to place tighter con-
straints on the baryon fraction �b/�m from galaxy surveys alone,
and an evaluation of the additional constraints on the running of
the spectral index of the primordial power spectrum as increasingly
powerful galaxy surveys are combined with WMAP.

We summarize our general findings as follows.

(i) On linear-regime scales, a large photometric redshift sur-
vey can provide competitive power spectrum measurements when
compared to contemporaneous spectroscopic surveys. For example,
given a magnitude threshold r lim = 23, a 10 000-deg2 photometric
redshift survey with error parameter σ 0 = 0.03 results in a confi-
dence of detecting the acoustic oscillations that is comparable to
a spectroscopic survey covering 1000 deg2. (Albeit with the loss
of radial information that is helpful for constraining dark energy
models).

(ii) We compare various different definitions of ‘detection of
acoustic oscillations’, the most optimistic of which is a �CDM fit to
the data (i.e. derivation of a baryon fraction significantly exceeding
zero), which (for fixed values of h and ns) yields detections with sta-
tistical significance approximately a factor of four σ ’s greater than
our default ‘model-independent’ fit using no shape information.

(iii) Concerning the power spectrum turnover, the relevant scales
are sufficiently large that photometric redshifts with precision better
than σ 0 = 0.04 retain information equivalent to spectroscopic sur-
veys. An imaging depth r ∼ 24 is required to deliver a 3σ detection
confidence.

(iv) Our results are robust against more complex photometric
redshift error distributions such as double-Gaussian models, if our
parameter σ 0 is interpreted as the overall rms error.

In terms of realistic ongoing and future surveys we have the
following.

(i) The SDSS has already yielded a convincing detection of
acoustic features in the spectroscopic survey of LRGs. A marginal
‘model-independent’ detection may also follow from this sample.
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(ii) Analysis of an LRG photometric redshift data base selected
directly from the imaging data may yield a measurement of compa-
rable precision.

(iii) Assuming a �CDM model and calculating the number of
standard deviations by which �b/�m (marginalized over the shape
parameter �mh) exceeds zero shows that, for our simulated full
SDSS spectroscopic survey the baryons would be detected at 3.5σ ,
whereas for a photometric redshift survey to magnitude depth r <

21 with δz = 0.03(1 + z) the detection level is 9σ . We note that
these analyses assume a conservative specification of the maximum
wavenumber, kmax, for which a linear power spectrum is fitted.

(iv) A high-significance analysis of the acoustic oscillations from
photometric redshifts, and a model-independent detection of the
power spectrum ‘turnover’, requires a significantly deeper optical
data base (r ∼ 24) over an area of several thousand square degrees.
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